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a b s t r a c t

For the analysis of metabolite systems, nuclear magnetic resonance (NMR) spectroscopy has become an
important quantitative monitoring technology. Automated quantitation methods are highly desired and
mainly characterized by the tasks of model selection and parameter approximation. This paper proposes
a promising automated two stage approach in the frequency-domain, in which signaling peaks are first
identified and filtered from noise based on curvature properties of the spectrum, and then proportionally
approximated based on the analytical solution of a Lorentz-function. Remarkably, in opposition to com-
mon least-squares approaches, the proposed approximation scheme does not rely on partial derivatives,
and furthermore, the runtime is independent to the number of spectral datapoints. Simulations provide
promising empirical evidence for successful peak selection and parameter approximation, with the
results for the latter highly outperforming the LEVENBERG–MARQUARDT algorithm in terms of error minimiza-
tion and robustness.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction and related work

Regarding the complexity on the molecular level of living sys-
tems in general, high-throughput devices are essentially needed
towards a comprehensive understanding of the underlying mecha-
nisms and principles. In this context, the NMR technology has
much potential due to its quantitative, non-invasive and non-
destructive monitoring characteristics. However, analyzing and
interpreting a series of NMR spectra is still a challenging problem,
and satisfying automated approaches are still missing. In theory
[1], an NMR spectrum can be described as a superposition of ana-
lytically known functions but with unknown parameters. Over
decades, various quantitation methods have been proposed, aim-
ing at the identification and approximation of these parameters
either in the time-domain [2] or after Fourier-Transform or both
[3]. However, a golden standard does not exist yet.

In practice, an NMR signal is distorted in many ways, ranging
from inhomogeneous magnetization [4] and noise arising from dif-
ferent sources during the measurement [5] through artifacts of the
Fourier-Transform [6,7] to frequency shifts mainly induced by
molecular interactions within the sample itself. Many approaches
ll rights reserved.
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to enhance the quality of the signal have been proposed, e.g. zero
filling and apodization [7,9,10], spectral noise filtering [11,12],
phase correction and interpolation [6,13,14] and reference decon-
volution [15–17], to provide a coarse overview.

However, regarding the analysis of multiple NMR spectra in e.g.
high-throughput experiments, a different kind of problems arises
as well. Especially high-field 1D NMR experiments of heteroge-
neous metabolite samples typically yield in more than tens of
thousands of datapoints (dps) per spectrum, representing the
superposition of hundreds of spectral components and more.
Hence, data reduction methods are highly desirable to reduce costs
of computation for further analysis. Various methods for the
extraction of relevant features for multivariate analysis and classi-
fication have been proposed, and are in the following grouped into
three classes:

(1) Spectral binning
(2) Targeted profiling
(3) Peak selection and parameter approximation

Spectral binning is often applied prior to principal component
analysis and extensions of it [18–23]. It is considered to potentially
mitigate effects of peak shifts and other variations by averaging
over a certain number of datapoints [24]. However, since these
shifts in the frequency-domain may commonly occur for each peak
or peak pattern in each spectrum differently, single bins at same
positions of different spectra may not contain signal from the same

http://dx.doi.org/10.1016/j.jmr.2009.09.003
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source of origin at all, even if the differences are small. The results
are dramatic loss of spectral resolution, obscured feature vectors,
and hence potential misinterpretation of the data [20,25].

As the NMR chemical shifts are sensitive to concentration, tem-
perature and the pH-value of the metabolite solutions under inves-
tigation, the spectral response for a given metabolite differs from
spectrum to spectrum. To circumvent this problem, compound-
specific peak patterns are manually assigned in a process known
as Targeted Profiling [26]. As a result, an NMR spectrum series M
containing m spectra is turned into a set of compounds
{c1, . . .,ck}, with the feature vector {vi,1,. . .,vi,m} for each compound
i denoting its relative concentration in each spectrum. Subse-
quently, multivariate methods can be applied based on the
achieved metabolite concentrations. The crucial part of this ap-
proach is the pattern assignment itself, which e.g. in [26] has been
performed manually. Although this approach seems to be very
promising, the limitations are clear: manual assignment demands
expert knowledge, is time consuming, and the outcome is re-
stricted to the reference compounds database ab initio.

Peak Selection and Parameter Approximation, also known as
Quantitation, constitutes the third class of feature extraction meth-
ods. Motivated by the fact that ideally each resonance frequency of
the measured time signal corresponds to a known analytical
expression, the aim of these approaches is to approximate the
corresponding parameters to accurately model the signal, either
by directly operating on the time signal [2,4,27–29,35], or after
Fourier-Transform [3], e.g. by exact interpolation [6,14], by the
LEVENBERG–MARQUARDT algorithm [30–32], or based on genetic algo-
rithms [33,34]. Thereby, a correct identification and separation of
signal peaks from noise and artifacts, plays a key-role to successful
approximation. Predominantly, methods concerning this task in
the frequency-domain focus on the occurrence of local maxima
[36,37]. By this, the identification of overlapped Lorentz-functions
called ‘‘shoulders” is not well supported, as shown in previous
work of Koh et al. [38]. This paper proposes an essentially extended
approach called Lorentzian Spectrum Reconstruction for both peak
identification and parameter approximation in order to automati-
cally model an NMR spectrum as a superposition of single
Lorentz-functions.
2. Definitions

After applying the Fourier Transformation (FT) [8], an NMR
spectrum can ideally be written as [1]
Fig. 1. The Lorentz-function from Eq. (4) as a spectral component of an NMR spectrum.
area). (b) An example overlapping of three Lorentzians, resulting in a single maximum a
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with xj denoting the frequency (spectral position of the maximum),
T2j

denoting the decay rate, Aj, denoting the amplitude and uj

denoting the phase of spectral component j. i stands for the com-
plex number with i2 ¼ �1.

By assuming that phase correction has been applied properly,
the dispersive part of the spectrum (Eq. (3)) can be neglected,
resulting in the absorption mode signal (Eq. (2)) as a sum of Lor-
entz-functions:

SðxÞ ¼
XjJj

j

Y jðxÞ; with YjðxÞ ¼
XjJj

j
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kj

k2
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where kj ¼ 1=T�2j
stands for the half width at half height (HWHH).

The height at the maximum of a Lorentz-function Yj is given as
YjðxjÞ ¼

Aj

kj
, and the area of Yj equals Ajp (see Appendix A). In

the remainder of this work, only positive values for k and A are
considered, i.e. k,A P 0. Fig. 1(a) shows an example Lorentz-
function.

Even in the ideal case of Eq. (4), the number of local maxima
does not necessarily equal to the number of single Lorentz-func-
tions due to effects of overlapping. In the following, a Lorentz-func-
tion is called hidden or simply a ‘‘shoulder”, if there exists another
Lorentz-function with the same nearest local maximum in the
spectrum but with lesser distance. Fig. 1(b) illustrates an example
peak overlap resulting in two hidden peaks.

With respect to the following sections, w = {w1, . . .,wn} finally
denotes the discrete list of frequencies of a spectrum containing
n datapoints in descending order w1 > � � � > wn according to the
convention in NMR spectroscopy [39]. The corresponding intensi-
ties are denoted as {S(w1), . . .,S(wn)}, and the second discrete deriv-
atives of a spectrum is denoted as S00 (see Appendix B for more
details).

3. Methods

In extension to Koh et al. [38], this paper proposes an ap-
proach for automated quantitation method called Lorentzian
(a) A single Lorentzian (solid line) at position x0 with (HWHH) k and area Ap (grey
nd two ‘‘shoulders” of the spectrum.
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Spectrum Reconstruction, addressing both the problem of peak
selection, namely the identification and selection of Lorentz-func-
tions contained in an NMR spectrum, and parameter approxima-
tion, the approximation of the corresponding parameters. For
clearness, we will discuss both parts separately.

3.1. Peak Selection

A trivial way to find peaks is to search for local maxima, a
strategy, which to some extent has been followed by e.g. [36–
38] and is commonly available as a basic feature in common
NMR software. As mentioned in the previous section, the major
drawback of this approach is that hidden peaks are detected only
by investing additional computational effort, or even neglected
at all.

A reasonable way to find all peaks instantly, even if they
are overlapped, is to take into account the changes in the cur-
vature of the spectrum by observing local minima of the sec-
ond derivative S00, which correspond to locally maximal turns
in clockwise direction of the original function, hence giving
rise to the curvature property of interest. Fig. 2(a–c) show an
example overlapping of Lorentz-functions of Eq. (4), the result-
ing spectrum and its derivatives. For clearness, the Lorentzians
are equally scaled and shaped. One clearly observes, that the
minima of the second derivative function (dashed line) are
much better preserved than the maxima of the spectrum (solid
line) (compare Fig. 2(a–c)). For the scenario shown, namely gi-
ven two equally shaped and scaled Lorentz-functions Y1 and
Y2, peak overlap resulting in the loss of a local maximum in
their sum Y occurs for the distance dðY1;Y2Þ 6 2ffiffi

3
p k. Further-

more, the number of roots in the second derivative Y00 of the
sum Y equals three for dðY1;Y2Þ ¼ 2ffiffi

3
p k, and two for

dðY1;Y2Þ < 2ffiffi
3
p k (for the proofs, see Appendix C). In the follow-

ing, each position wi holding a negative local minimum of the
second discrete derivative S00 is considered as a potential peak
position only. Peak identification is based on searching for lit-
tle ‘‘bumps” in the spectrum instead of climates only, intui-
tively speaking.

Due to spectrum distortions as mentioned in the previous
section, a separation step is needed in order to distinguish real
signal from noise and other artifacts. For this purpose, a second
derivative minimum wm is assigned a surrounding interval
[wl wr] with wl, wr 2w as the closest root or local maximum in
S00, either of which is closer positioned to wm, more formally
written as

wm ) S00ðwmÞ < 0 ^ S00ðwm�1Þ > S00ðwmÞ < S00ðwmþ1Þ ð5Þ
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Fig. 2. Two overlapping Lorentz-functions (grey area) with equal HWHH k and area A, the
(dashed line), with distances varying as indicated.
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With p = (wl,wm,wr) denoting a position triplet to a second
derivative minimum at wi, a score to distinguish between signal
and noise is defined as

scoreðpÞ ¼
min

Pm
k¼l
jS00ðwkÞj;

Pr
k¼m
jS00ðwkÞj

� �
max score

ð8Þ

with max score as a normalizing term. The main idea of Eq. (8) is to
account for both the overall negativity of the second derivative and
the corresponding interval width, namely for the degree and the
length of a consecutive, clockwise-rotating curvature in the spec-
trum, assuming that noise distortions result in high fluctuations
but over a smaller number of datapoints. The minimum of both
sides is chosen in order to suppress an overrating of triplets due
to the possible occurrence of asymmetric second derivative shapes.

Separation then takes place by discarding those peak triplets,
whose corresponding score falls below the mean plus d times the
standard deviation of scores out of a presumed signal-free region
R. In most metabolite experiments, this region can be found for fre-
quencies below �0.5 ppm or above 10 ppm (parts per million). The
following algorithm describes the peak selection approach:
co
Algorithm 1. (Curvature-Based Peak Selection)

Input: Spectrum S, second derivative S00 , a signal-free region R � S, thresh-
old parameter d

Out-
put:Fil-

tered list of peak triplets L
1: L, L0 = ;
2: Find all peak triplets, given S00 and add to L0

3: Compute scores of each triplet p of L0

4: Compute meanscore and sdscore given L0 , R
5: for j = 1 to |L0| do
6: if score (pj) P meanscore + d � sdscore then
7: Add pj to L
8: end if
9: end for

10: return L
Algorithm 1 has a runtime of O(n) with n denoting the number
of spectral datapoints, and can therefore be considered as runtime-
efficient (for more details, see Appendix D).

3.2. Parameter Approximation

Once the set of peak triplets is known, the corresponding
parameter set needs to be fitted in accordance with the spectrum.
By making use of the analytical solutions of the parameters, the
rresponding sum (solid line), the resulting 1st (dotted line) and second derivative



Fig. 3. Parameter approximation by rule of proportion. (a) Three points for a peak are
superimposed spectrum. (c) Iteratively adjust the heights by rule of proportion (Eq. (10

1 Only positive distortions are considered to guarantee positive height values and
therefore positive width and area parameters of a Lorentz-function (compare Eq. (4))
In case of a real-world spectrum, only peak triplets containing positive values are
further considered by now.
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approximation takes place iteratively by the rule of proportion, as
described in the following:

For a spectrum S containing a single peak (|J| = 1), it holds
Y(w) = S(w), and the parameters can be achieved directly by solving
the quadratic equation system

Sðw1Þ ¼ Yðw1Þ ¼ A
k

k2 þ ðw1 �x0Þ2

^ Sðw2Þ ¼ Yðw2Þ ¼ A
k

k2 þ ðw2 �x0Þ2

^ Sðw3Þ ¼ Yðw3Þ ¼ A
k

k2 þ ðw3 �x0Þ2

ð9Þ

for the parameters A, k and x0. This results in polynomial expres-
sions for the parameters, depending on the positions {w1,w2,w3}
and the corresponding heights {Y(w1),Y(w2),Y(w3)} only (see
Appendix E for supporting information and [6] for a similar ap-
proach). Fig. 3(a) elucidates this situation. Note, that these expres-
sions need to be calculated only once, and can be applied for
arbitrary point triplets of a Lorentz-function.

Commonly a real-world spectrum contains more than only one
spectral component, and all peak-specific intensity values Yj(wk),
wk 2w of a peak j are unknown a priori (Eq. (4), Fig. 3(b)). Let in
the following bY ðiÞj denote the model of peak j at iteration step i, and
let xj stand for the elements of the jth peak triplet {wj,l,wj,m,wj,r}. With
the initial guess bY ð0Þj ðxjÞ ¼ SðxjÞ, the corresponding peak parameters
can then be approximated based on the assumption, that the propor-
tion between the new value bY ðiÞj ðxjÞ and the old value bY ði�1Þ

j ðxjÞ is sim-
ilar to the proportion between the actual spectrum and the current
sum, more formally written asbY ðiÞj ðxjÞbY ði�1Þ

j ðxjÞ
¼ SðxjÞP

l2J
bY ði�1Þ

l ðxjÞ
;

which directly leads to the new value bY ðiÞj ðxjÞ asbY ðiÞj ðxjÞ ¼ bY ði�1Þ
j ðxjÞ �

SðxjÞP
l2J
bY ði�1Þ

l ðxjÞ
ð10Þ

(see Fig. 3(c and d)). The corresponding approximation algorithm is
described in Algorithm 2.

Algorithm 2 (Proportional Approximation)

Input: Spectrum S, List L of peak triplets
Output: Approximated Parameter Set J

1: Initial guess: bY 0
j ðxjÞ ¼ SðxjÞ for all j 2 L

2: for i = 1 to K do
3: for j = 1 to |L| do
4: if bY ði�1Þ

l ðxjÞ 6 SðxjÞ for all l 2 J then
5: Calculate the sums

P
l2J
bY ði�1Þ

l ðxjÞ
6: Calculate new heights bY i

jðxjÞ by Eq. (10)
7: Calculate new parameters xðiÞj , kðiÞj , AðiÞj by solu-

tions of Eq. System 9
8: end if
9: end for

10: end for
11: return J
The corresponding worst-case runtime lies in O(K � |J|2), and

remarkably, it is independent of the number of spectral datapoints
of a spectrum (for more details, see Appendix F).

In summary, a spectrum can be translated into its distinct set of
Lorentzian parameters by the sequential execution of Algorithms 1
and 2, as described in the following algorithm:

Algorithm 3 (Lorentzian Spectrum Reconstruction II)

Input: Spectrum S, signal-free region R � S, threshold para-
meter d, maximal iteration number K

Output: List J of peaks containing the approximated
parameters

1: Find the list L0 of peak triplets (Algorithm 1) given S
2: Filter L0 given R and parameter d (Algorithm 1) to

receive L
3: Approximate Lorentzian parameter set to receive J

(Algorithm 2), given S, L and K
4: return J

The worst-case runtime of Algorithm 3 lies in O(n + K � |J|2),

chosen to directly calculate the Lorentzian parameters. (b) Initial guess exceeds a
)) and recalculate the parameters. (d) Result after three iterates.
where n again denotes the number of spectral datapoints.

4. Results and discussion

Since the outcome of Algorithm 3 is highly dependent on the
outcome of the peak selection step, the results of Algorithm 1 are
shown and discussed first.

4.1. Peak Selection results

The performance is tested on 20 simulated spectra, each given
as a sum of 100 Lorentz-functions with a global HWHH parameter
k = 0.005, a global amplitude parameter A = 1.0, and with varying
positions xi of a peak i given as

xi ¼ xi�1 þ kþ uk ð11Þ

beginning with x0 = 20 k and u � [0,1] as a uniformly distributed
random number. Spectrum distortions have been simulated by add-
ing a uniformly distributed random number v out of the range
v � [0, r]1 to each spectral datapoint as

r ¼
A
k

� �
q

ð12Þ

q specifies the ratio between the common peak height A
k and maxi-

mal distortion amplitude r, with a high value implying a low level of
noise. The noise region (compare Section 3.1) was set to the ranges
[0,10k] and ½x99 þ 10k;x99 þ 20k�.

The reasons for choosing uniform line width and amplitude
parameters are both to maintain an equal level of distortion for
each peak, and to control the resulting degree of peak overlap. In-
.
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deed, resulting in a hidden peak for a distance dðY1;Y2Þ 6 2ffiffi
3
p k, as

shown in Appendix C, applies only for the scenario of two Lor-
entz-functions as shown in Fig. 2, but with observing that the gra-
dient decreases roughly to the power of three for increasing
distances to the maximum (Eq. (A.1) in Appendix A), the contribu-
tion of further Lorentzians to the overlapping of a consecutive pair
of peaks can be assumed to be more or less constant, and is there-
fore neglected. On the basis of this pairwise simplification, a rough
estimate for the expected number of hidden peaks E(#hidden) in a
sum of 100 Lorentz-functions follows as

Eð#hiddenÞ 	 100
2ffiffiffi
3
p � 1
� �

	 15 ð13Þ

by noting that the probability for each peak i to become a hidden
peak then simplifies to the probability for u to become less equal
than 2ffiffi

3
p � 1. At the same time, the generated spectra are very likely

to contain both maximum and hidden peaks as well, since the esti-
mated probability for achieving a spectrum with 100 maximum
peaks only is then also given as 2� 2ffiffi

3
p

	 
100
	 5 � 10�8.

Fig. 4 shows the selection result for the simulated spectra. For
the unfiltered scenario, the number of found peaks exceeds the
correct number considerably, as can be observed in Fig. 4(a). The
reason lies in the occurrence of additional minima and maxima
of the second derivative due to the artificial distortions, as shown
in Fig. 4(d) for an example subregion of the simulated spectra. In
order to mitigate these distortion effects, the signal is smoothened
by applying a mean filter, as shown in Fig. 4(e) for a two times con-
secutively executed (second order) two-point mean filter (2,2-fil-
ter), and in Fig. 4(f) for a three times consecutively executed
(third order) three-point mean filter (3,3-filter). Fig. 4(g) shows,
that the peak scores of the unfiltered scenario are unfavorably dis-
Fig. 4. Simulation results for the peak selection. Top: Number of selected peaks on averag
data, (b) after 2,2-filtering and (c) after 3,3-filtering. Center: Example second derivative in
Corresponding triplet scores for q = 200. The grey areas denote the chosen signal-free regi
2,2-filtering and (i) after 3,3-filtering (see the text for more details).
tributed in terms of separating the signal peaks based on d. After
smoothing the spectra, a clear separation of peak and noise triplet
scores can be observed in Fig. 4(h and i), leading to a drastic
improvement in the selected number of peaks, as can be seen in
Fig. 4(e and f), respectively. It shall be noted, that a correct number
of selected peaks does not necessarily imply a correct selection of
peaks, and this will be discussed further in the following section.

4.2. Parameter Approximation results

In the following, the results of the proposed Proportional
Approximation (PA) algorithm (Algorithm 2) are shown and dis-
cussed in comparison to the LEVENBERG–MARQUARDT algorithm, in the
remainder denoted as LM. The former has been implemented by
the first author in the programming language C#, and for the latter
algorithm the software Mathematica 6.0 was used [40]. The evalu-
ation is based on 20 spectra again, but now with each containing
only 20 Lorentz-functions for reasons of lesser time consumption.
For the purpose of better reflecting real-world conditions, the
shape-parameter ki and the scale-parameter Ai of each Lorentz-
function Yi have been varied uniformly in the ranges
ki 2 [0.002,0.005] and Ai 2 [50,100], and the positioning of each
peak took place as

xi ¼ xi�1 þ v maxðki; ki�1Þ

withx0 = 0.0 and v � [1.5,2] as a uniformly distributed random num-
ber. In opposition to the spectra generated for the picking evaluation,
the pairwise distances between consecutive Lorentz-functions now
differ to a lesser degree of freedom, accounting for overlapping effects
additionally introduced by varying the shape and amplitude param-
eters as described. Distortions of the spectrum are introduced relative
e out of 20 spectra for varying distortion levels q and picking thresholds 5 of (a) raw
a subregion of (a) raw data, (b) after 2,2-filtering and (c) after 3,3-filtering. Bottom:

on, and the solid lines indicate the selection score for d = 3.0 on (g) raw data, (h) after



Fig. 5. Mean squared error of the proposed method PA (solid line) and for LEVENBERG–MARQUARDT(dotted line) for q = 500. The length of the error bars equals two times the
standard deviation on average out of 20 spectra.

H.-W. Koh et al. / Journal of Magnetic Resonance 201 (2009) 146–156 151
to the maximal peak height by a uniformly distributed random num-
ber v out of the range v 2 [0, r], with r given as

r ¼
maxj2J

Aj

kj

	 

q

ð14Þ

For evaluation purposes, three different noise ratios q are con-
sidered: q = 1000, q = 500 and q = 200, and a 5,3-filter (five times
execution of a three-point mean filter) is applied to smoothen
the spectra. Subsequently, the peaks are found by the Curvature-
Based Peak Selection (Algorithm 1) with threshold parameter
d = 3.0 and a noise region chosen as mentioned above, resulting
in the selection of 20 peaks for all spectra.

Given spectrum S containing n datapoints and |J| Lorentz-func-
tions with parameters xj, kj and Aj, and with bY ¼Pi

bY i denoting
the model with model parameters bxj, kj and bAj, the following mea-
sures are used for evaluation purposes:
Fig. 6. Mean percentage error of the parameters for the proposed method PA (solid line) a
center: HWHH (MPE-HWHH), bottom: area (MPE-Area). The length of the error bars eq
(1) Mean Squared Error (MSE) as the standard error function of
the discrete spectrum, given as
nd for LE

uals two
1
n

Xn

i¼1

SðwiÞ � bY ðwiÞ
	 
2

ð15Þ
(2) Mean Squared Error at the Peak Hills (MSE-PH) accounting for
the mean squared error within the peak intervals ½wlj ;wrj

�
Eqs. (6) and (7), given as
1
jJj
XjJj
j¼1

1
rj � lj

Xrj

i¼lj

SðwiÞ � bY ðwiÞ
	 
2

0@ 1A ð16Þ
(3) Mean Squared Error at the Peak Maxima (MSE-PM) accounting
for the squared error at each discrete peak maximum posi-
tion wmj Eq. (5), given as
VENBERG–MARQUARDT (dotted line) along 50 iterations, top: position (MPE-Pos),
times the standard deviation on average out of 20 spectra.



Fig. 7. Portions of an example real-world spectrum (solid line), the fitted Lorentz-functions by Algorithm 2 (grey areas) and the corresponding sum (dotted line) after 10
iteration steps.
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1
jJj
XjJj
j¼1

Sðwmj
Þ � bY ðwmj

Þ
	 
2

ð17Þ
(4) Mean Percentage Error of the Position Parameters (MPE-Pos)
accounting for the percentage error of the position parame-
ters bxj, relatively to the original HWHH parameters kj of
peak Yj, given as
100
jJj

XjJj
j¼1

ð bxj �xjÞ
kj

���� ���� ð18Þ
(5) Mean Percentage Error for the HWHH Parameters (MPE-
HWHH) accounting for the percentage error of each HWHHbkj, given as
100
jJj

XjJj
j¼1

1�
bkj

kj

�����
����� ð19Þ
(6) Mean Percentage Error for the Areas (MPE-Area) accounting
for the percentage error of the parameters bAj, given as
100
jJj

XjJj
j¼1

1�
bAj

Aj

�����
����� ð20Þ
For LM, the parameters have been initialized with the initial
parameters bxð0Þi , bkð0Þi and bAð0Þi , found in lines 2–4 of Algorithm 2.
Since the outcome of LM is highly dependent on the parameter ini-
tialization, five additional runs with decreased parameters bki andbAi as

bx i ¼ bxð0Þi þ ux; ð21Þbki ¼ bkð0Þi � uk; ð22ÞbAi ¼ bAð0Þi � uA; ð23Þ

with uniformly distributed random variables ux � [�0.001,0.001],
uk � [0.5,1.0] and uA � [0.5,1.0] are considered as well. The param-
eters are decreased to address the fact that the spectrum is always
exceeded by the initial guess bY ð0Þj ðxjÞ ¼ SðxjÞ. For each spectrum, the
fit which minimizes MSE (Eq. (15)) out of the initial and the addi-
tional five runs with decreased parameters as described are further
considered for evaluation.

Fig. 5 shows the mean squared error performance on average
out of 20 spectra for a noise ratio of q = 500 (see Eq. (14)) and
50 iterations.2 It can be observed, that PA leads to a faster er-
ror-decrease than LM for all considered mean squared error func-
tions, and outperforms LM especially for the error function MSE-
PM, as shown in Fig. 5(c). The reason lies in the fact, that PA is
based on the selected peak-specific point triplets only, whereas
LM is based on decreasing the mean error considering all data-
points. In addition, the results of PA are more robust than LM,
as can be observed by comparing the length of the error bars of
the two approaches.

Fig. 6 shows the mean percentage error in the Lorentzian
parameters on average out of 20 spectra of PA and LM for differ-
ent noise ratios q = 1000, 500 and 200 (see Eq. (14)). PA clearly
outperforms LM in both accuracy and especially robustness for
all of the three Lorentzian parameters position, HWHH and area
of a peak. With a percentage error of less than 10%, PA yields
peak position parameters with promisingly low deviation, as
shown in Fig. 6(a–c). It can also be observed, that the error is al-
ready relatively small from the very beginning of the approxima-
tion, indicating that the proposed picking procedure (Algorithm
to lesser space occupation, only the results for q = 500 are shown. The results
000 and q = 200 do not differ significantly.
1) is indeed capable of not only selecting the number of peaks
correctly, but also to identify the set of peaks with high accu-
racy. With an average standard deviation of ca. 1–3% (10–50%)
in the position, ca. 5–10% (20–50%) in the HWHH, and ca. 5–
10% (20–50%) in the area parameter for PA(LM), the proposed ap-
proach also shows much more robust behavior than LM.

Fig. 7 shows some regions of a real-world metabolite NMR spec-
trum of a human colon cancer cell line after applying the proposed
automated reconstruction approach. The spectrum is obtained on
a VARIAN INOVA 800 spectrometer operating at 799.77 MHz. The
data was acquired using a 13 kHz spectral width, 22,114 datapoints,
and 1.7 s of acquisition time. Zero filling was performed resulting in
32,768 (215) data points, and the FFT algorithm was applied without
any line broadening. Baseline and phase correction were performed
by the software ACD/SpecManager 6.0. After 3,3-filtering and select-
ing the noise regions to the ranges [12.8,10.0] and [�1,�3.4] (in
ppm), 531 peaks were selected by the proposed Algorithm 1 with
picking threshold d = 6.0. The execution of Algorithm 2 was finished
after ca. 9 s on a dual-core 1.66 GHz laptop with 1 GByte RAM and OS
Windows XP. The program is freely available upon request.

5. Conclusions and outlook

In this work, a two-step approach for automated feature
extraction is proposed, solving sequentially the tasks of peak
selection and parameter approximation. Based on theoretical as-
pects concerning the overlap of two equally shaped and scaled
Lorentz-functions, a runtime-efficient selection procedure (Algo-
rithm 1) is proposed, being able to simultaneously detect hidden
and unhidden peaks at once. Simulations empirically demon-
strate, that the proposed approach in conjunction with mean fil-
tering is able to find the set of signaling Lorentz-functions
properly for a broad range of varying noise amplitudes and pick-
ing thresholds. A subsequent parameter approximation scheme
(Algorithm 2) is proposed, exploiting the analytical solution of
a single Lorentz-function and adjusting the parameters propor-
tionally in each step of the iteration. Empirical studies show,
that the proposed approach highly outperforms the LEVENBERG–
MARQUARDT algorithm in terms of minimal error and robustness
in general. Especially the results for the position and area
parameters are highly promising.

Several potentially interesting questions are still waiting to be
answered, i.e. concerning the minimal spectral distance of a pair
of Lorentz-functions to occur as a distinct second derivative min-
imum, or concerning convergence properties of the proportional
fitting procedure. To directly enable a reliable multivariate anal-
ysis for, and classification of NMR spectra obtained from a series
of metabolite solutions, one has to cope with the sensitivity of
the chemical shifts to concentration, temperature and the pH-va-
lue of the solutions. In this context, it can be concluded, that the
proposed approach is in general highly suitable for solving the
task of automated NMR feature extraction in terms of model
selection and parameter approximation. As a final remark, the
proposed approach is in general not restricted to NMR spectro-
scopic data, but applicable to all spectra given as superpositions
of known functions, for which the analytical solution of the
respective parameters can be determined a priori.

Appendix A

For a Lorentz-function Y(x) given as

YðxÞ ¼ A
k

k2 þ ðx�x0Þ2

with maximum position x, HWHH k and scaling factor A, the first
three derivatives of Y are given as
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Y 0ðxÞ ¼ � 2Akðx�x0Þ

k2 þ ðx�x0Þ2
	 
2 ðA:1Þ

Y 00ðxÞ ¼ 8Akðx�x0Þ2

k2 þ ðx�x0Þ2
	 
3 �

2Ak

k2 þ ðx�x0Þ2
	 
2 ðA:2Þ

Y 000ðxÞ ¼ �48Akðx�x0Þ3

k2 þ ðx�x0Þ2
	 
4 þ

24Akðx�x0Þ

k2 þ ðx�x0Þ2
	 
3 ðA:3Þ

The corresponding roots of the derivatives are given as

Y 0ðxÞ ¼ 0() x ¼ x0 ðA:4Þ

Y 00ðxÞ ¼ 0() x ¼ x0 

1ffiffiffi
3
p k ðA:5Þ

Y 000ðxÞ ¼ 0() x ¼ x0 _x ¼ x0 
 k ðA:6Þ

Further, with Y(�1) denoting the first order integral function of Y,
given as

Y ð�1ÞðxÞ ¼ A arctan
x�x0

k

	 

; ðA:7Þ

the area of Y equals Ap due toZ 1

�1
YðxÞdx ¼ lim

a!1
b!�1

½Y ð�1ÞðxÞ�ab ¼ lim
a!1

Y ð�1ÞðaÞ � lim
b!�1

Y ð�1ÞðbÞ

¼ A lim
a!1

arctan
a�x0

k

	 

� A lim

b!�1
arctan

b�x0

k

� �
¼ A lim

a!1
arctanðaÞ � A lim

b!�1
arctanðbÞ

¼ A
p
2
þ A

p
2
¼ Ap:
Appendix B

Given a discrete spectrum S containing n datapoints as

S ¼ fðx1; Sðx1ÞÞ; . . . ; ðxn; SðxnÞÞg;

the first discrete derivative S0discr of S is given as

S0discr ¼ x01;S
0ðx1Þ

� �
; . . . ; x0n;S

0ðxnÞ
� �� �

¼ x1þx2

2
;Sðx2Þ�Sðx1Þ

	 

; . . . ;

xn�1þxn

2
;SðxnÞ�Sðxn�1Þ

	 
n o
With presuming equal distance between any consecutive pair of

frequencies xi, xi+1, i 2 N of S, the second discrete derivative S00discr is
given as

S00discr ¼ x001; S
00ðx1Þ

� �
; . . . ; x00n; S

00ðxnÞ
� �� �

with x00i ¼ xiþ1

and S00ðxiÞ ¼ Sðxiþ2Þ þ SðxiÞ � 2Sðxiþ1Þ
Appendix C

Lemma 1. Given two equally scaled and shaped Lorentzian functions
Y1(x) and Y2(x) as

Y1ðxÞ ¼ A
k

k2 þ ðx�x1Þ2

Y2ðxÞ ¼ A
k

k2 þ ðx�x2Þ2
and given their sum Y(x) = Y1(x) + Y2(x), the total number of local opti-
ma in Y equals 1 for

jx1 �x2j 6
2ffiffiffi
3
p k ðC:1Þ

Proof. The positions of the local optima in Y equal the zero posi-
tions of the first derivative. They can be found by solving the fol-
lowing equation for x:

Y 0ðxÞ ¼ �2Ak
ðx�x1Þ

ðk2 þ ðx�x1Þ2Þ2
þ ðx�x2Þ
ðk2 þ ðx�x2Þ2Þ2

 !
¼ 0 ðC:2Þ

resulting in three solutions x1, x2 and x3, given as

x1¼
x1þx2

2

_x2¼ x1

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4k2þðx2�x1Þ x1�x2þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2þðx1�x2Þ2

q� �s

_x3¼ x1

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4k2þðx1�x2Þ x2�x1þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2þðx2�x1Þ2

q� �s

x1 stands for the position of the local optimum of Y in the middle of
x1 and x2, which either is a minimum in the separated case, or the
single maximum in the overlapped case. x2 and x3 stand for the two
maxima in the separated case for x1 > x2 and x1 < x2, respectively.
Their root terms equal zero for

x1 ¼ x2 þ
2ffiffiffi
3
p k _x1 ¼ x2 �

2ffiffiffi
3
p k ðC:3Þ

which concludes that only one maximum occurs in Y if this partic-
ular relationship between the positions x1, x2 and the width
parameter h applies. There are two results for x1, distinguishing be-
tween x1 > x2 and x1 < x2 again. h

Lemma 2. Given two equally scaled and shaped Lorentz-functions Y1,
Y2, and given their sum Y as in Lemma 1, and let w.l.o.g. be x1 < x2,
then it holds that

x2 �x1 <
2kffiffiffi

3
p ) Y 00 has maximal two roots ðC:4Þ

Proof. Given any Lorentz-function Y0 as

Y0ðxÞ ¼ A
k

k2 þ ðx�x0Þ2

the corresponding second derivative Y 000 of Y0 has two roots, i.e.
x ¼ x0 
 1ffiffi

3
p k (see Eq. (A.5) in Appendix A), and is negative only

in the interval ½x0 � 1ffiffi
3
p k;x0 þ 1ffiffi

3
p k�, due to

Y 000ðxÞ < 0

8Akðx�x0Þ2

k2 þ ðx�x0Þ2
	 
3 �

2Ak

k2 þ ðx�x0Þ2
	 
2 < 0

() 2Ak

k2 þ ðx�x0Þ2
	 
2

4ðx�x0Þ2

k2 þ ðx�x0Þ2
� 1

 !
< 0

() 4ðx�x0Þ2

k2 þ ðx�x0Þ2
< 1

() 3ðx�x0Þ2 < k2

() x > x0 �
1ffiffiffi
3
p k ^x < x0 þ

1ffiffiffi
3
p k
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In consequence, Y 000 is positive for

x < x0 �
1ffiffiffi
3
p k ^x > x0 þ

1ffiffiffi
3
p k

To proof, that the summation of two equally shaped and scaled Lor-
entz-functions Y1, Y2 with dðY1; Y2Þ 6 2ffiffi

3
p k result in a sum Y, of which

the second derivative Y00 contains at most two roots, we focus
w.l.o.g. at and around the position x0 � kffiffi

3
p . Let for this purpose y1

be given as

y1 ¼ Y 00 x0 �
kffiffiffi
3
p þ c

� �
¼

8Ak c � kffiffi
3
p

	 
2

k2 þ c � kffiffi
3
p

	 
2
� �3 �

2Ak

k2 þ c � kffiffi
3
p

	 
2
� �2

¼
54Akc 3c � 2

ffiffiffi
3
p

k
	 
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{a

4k2 þ c 3c � 2
ffiffiffi
3
p

k
	 

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

a

0B@
1CA

3

with c 2 R<0, and let y2 be given as

y2 ¼ Y 00 x0 �
kffiffiffi
3
p þ d

� �
¼

8Akðd� kffiffi
3
p Þ2

k2 þ d� kffiffi
3
p

	 
2
� �3 �

2Ak

k2 þ d� kffiffi
3
p

	 
2
� �2

¼ 54Akd ð3d� 2
ffiffiffi
3
p

kÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{b

4k2 þ d 3d� 2
ffiffiffi
3
p

k
	 

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

b

0BB@
1CCA

3

with d 2 R>0. By noting that Y 000 is axis-symmetric in x0, since the
third integral function arctan is rotation-symmetric (without proof),
it is sufficient to show that the following holds:

c < 0 < d 6
kffiffiffi
3
p ^ jcj ¼ jdj ) jy1j < jy2j

for k, A > 0 the proof succeeds as

c < 0 < d 6
kffiffiffi
3
p ) a < 0 ^ b < 0

^c < 0 < d 6
kffiffiffi
3
p ^ jcj ¼ jdj ) jaj > jbj ^ jcaj > jdbj

^c < 0 ^ a < 0) ca > 0

^0 < d 6
kffiffiffi
3
p ^ b < 0) db < 0 ^ jdbj < 4k2

) 4k2 þ ca > 4k2 þ db

) ca
ð4k2 þ ca3Þ

<
db

ð4k2 þ db3Þ
) jy1j < jy2j

h

Appendix D

With observing, that a peak triplet as defined by Eqs. (6) and (7)
can have an overlap with neighboring triplets in their boundary
positions li, ri only, the worst-case runtime complexity of Algo-
rithm 1 lies in O(n + |L|), since finding the position triplets in line
2 takes time O(n + |L|) at most, since calculating the discrete areas
in line 3 needs time O(n + |L|) at most, since calculating the mean
and standard deviation of the scores takes time O(|L|), and since
the for-loop in lines 5–9 takes time O(|L|) as well. Algorithm 1 is
linear to the sum of spectral datapoints plus the number of second
derivative minima. Considering that the maximal number of sec-
ond derivative minima equals jLj 6 n

2, Algorithm 1 has a runtime
of O nþ n

2

� �
¼ OðnÞ, and can therefore be considered as runtime-

efficient.

Appendix E

The equation system

y1 ¼ A
k

k2 þ ðx1 �xÞ2

^ y2 ¼ A
k

k2 þ ðx2 �xÞ2

^ y2 ¼ A
k

k2 þ ðx3 �xÞ2

can be solved for the parameter x, k and A as

x¼
x2

1y1y2;3þx2
3y1;2y3þx2

2y2ð�y1;3Þ
2x1;2y1y2�2ðx1;3y1þð�x2;3Þy2Þy3

ðE:1Þ

k¼ 1ffiffiffiffiffiffiffiffiy2;3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

3y3þ
a

4ðx1y1y2;3þx3y1;2y3þx2y2ð�y1;3ÞÞ
2

s
ðE:2Þ

A¼
�4x1;2x1;3x2;3y1y2y3ðx1y1y2;3þx3y1;2y3þx2y2ð�y1;3ÞÞk

x4
1;2y2

1y2
2�2x2

1;2y1y2 x2
1;3y1þx2

2;3y2

	 

y3þ x2

1;3y1�x2
2;3y2

	 
2
y2

3

� �
ðE:3Þ

with

a ¼ � x4
1;2y2

1y3
2

	 

þx2

1;2y1y2
2by3 � y2cy2

3

þ ððx1 � 3x3Þx1;3y1 � ðx2 � 3x3Þx2;3y2Þ
� x2

1y1 �x2
2y2 þx2

3ð�y1;2Þ
� �

y3
3;

b ¼ 3x2
1 þx2

2 � 2x2
3 � 2x1ðx2 þ 2x3Þ

� �
y1 þ 2x2

2;3y2;

c ¼ x1;3 3x3
1 �x2

1ð4x2 þ 5x3Þ þx1 2x2
2 þ 4x2x3 þ 5x2

3

� ��
�x3 2x2

2 � 8x2x3 þx2
3

� ��
y2

1 þ 2ðx2 �x3Þ
� ðx2

2ð�2x1 þx2Þ þ ð4x1;2Þx2x3 þ ð2x1 � 5x2Þx2
3 þx3

3Þ
� y1y2 þx4

2;3y2
2;

x1;2 ¼ x1 �x2; x1;3 ¼ x1 �x3; x2;3 ¼ x2 �x3;

y1;2 ¼ y1 � y2; y2;3 ¼ y2 � y3; y1;3 ¼ y1 � y3

Eqs. (E.1), (E.2) and (E.3) are well defined for

x1 < x2 < x3 ^ y1 < y2 > y3 ^ y1; y2; y3 > 0

and

y2 <
ðx1 �x3Þ2y1

ðx2 �x3Þ2
_ ðx1 �x3Þ2y1

ðx2 �x3Þ2
< y2 6

ð�2x1 þx2 þx3Þ2y1

ðx2 �x3Þ2
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^ y3 >
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ðx1 �x3Þ2y1 � ðx2 �x3Þ2y2

	 
2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 �x2Þ4ðx1 �x3Þ2ðx2 �x3Þ2y3
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ðx1 �x3Þ2y1 � ðx2 �x3Þ2y2

	 
4

vuuut
_

y2 ¼
ðx1 �x3Þ2y1

ðx2 �x3Þ2
^ y3 >

ðx1 �x2Þ2y1y2

2ðx1 �x3Þ2y1 þ 2ðx2 �x3Þ2y2_
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^ y3 < 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 �x2Þ4ðx1 �x3Þ2ðx2 �x3Þ2y3

1y3
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ðx1 �x3Þ2y1 � ðx2 �x3Þ2y2

	 
4

vuuut
� ðx1 �x2Þ2y1y2ððx1 �x3Þ2y1 þ ðx2 �x3Þ2y2Þ

ðx1 �x3Þ2y1 � ðx2 �x3Þ2y2

	 
2
Appendix F

By observing, that the number of peak triplets equals the num-
ber of resulting Lorentz-functions, and with K denoting the number
of iterations for the outer for-loop of lines 2–10 of Algorithm 2, the
worst-case runtime in terms of counting the number of essential
comparisons is given as O(K � |J|2), since calculating the sum of
all Lorentz-functions in line 5 takes time O(|J|) for each peak triplet
on its own, and since the time needed to calculate the new height
values and the new parameters in lines 6 and 7 lies in O(1).
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